Instructions: This is a written project and you are expected to write down detailed explanations and arguments to justify your calculations. If you wish to use a certain formula, be sure to state it clearly and give a brief justification for it.

Just a numerical answer, even when correct, will receive little credit.

Preamble: You will need the concept of \(\int_C P \, dx + Q \, dy \) where \(P, Q \) are functions of \(x, y \) and \(C \) is a piecewise parametrized closed curve.

The problem: For a curve \(C \) parametrized by a parametrization \(<x, y> = <u(t), v(t)> \) on an interval \([a, b]\), we define the integral

\[
\int_C P \, dx + Q \, dy = \int_{t=a}^{b} \left(P(u(t), v(t))u'(t) + Q(u(t), v(t))v'(t) \right) \, dt.
\]

If a closed curve is formed by successive pieces \(C_1, C_2, \cdots, C_r \), then we define integral over \(C \) as the sum of integrals over all the pieces.

You are asked to compute several such curve integrals. and make appropriate observations.

(1) (6 points) Let \(C \) be the triangle \(\triangle LMN \) where \(L = (0, 0), M = (2, 0) \) and \(N = (1, 1) \), traced counterclockwise.
 (a) (2 points) Parameterize the line segments \(LM, MN, \) and \(NL \)

 Answer:

 (b) (4 points) Given that the integral is additive, i.e.:

 \[
 \int_C x \, dy = \int_{LM} x \, dy + \int_{MN} x \, dy + \int_{NL} x \, dy
 \]

 Calculate each piece of the integral separately, and add the result.

 Answer:

(2) (3 points) Let \(C \) be the circle of radius 2 with center \((0, 0)\) traced counterclockwise. Parameterize the circle \(C \) and calculate the integral \(\int_C x \, dy \).

Answer:

(3) (1 point) Use basic geometry to calculate the area of \(\triangle LMN \) and the area of the circle of radius 2.

Answer:

(4) Extra Credit

Prove that changing \(N \) to \((k, 1)\) for an arbitrary real number \(k \), in problem 1 above, yields the same conclusion.

What theorem does this suggest to you? Why?

Answer: