1. Prove that \(n^2 < 2^n \) for all \(n \geq 5 \). [Hint: While proving this you might be forced to prove another inequality about \(2^n \) by a separate induction.]

2. Consider the sequence

\[
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, \ldots
\]

where each string of zeros has one more zero than the previous. Does this sequence converge or diverge? If it converges to a limit \(L \), prove that it converges to \(L \). If it diverges, prove that it diverges.

3. Suppose \(f: \mathbb{R} \to \mathbb{R} \) and \(f(x + y) = f(x) + f(y) \) for all \(x, y \in \mathbb{R} \).

(a) Prove that \(f(0) = 0 \).

(b) Prove by induction that \(f(nx) = nf(x) \) for all \(x \in \mathbb{R} \) and \(n \in \mathbb{N} \).

Let \(\alpha = f(1) \).

(c) Prove that \(f(x) = \alpha x \) for all \(x \in \mathbb{N} \).

(d) Prove that \(f(-x) = -f(x) \) for all \(x \in \mathbb{R} \). Conclude that \(f(x) = \alpha x \) for all \(x \in \mathbb{Z} \).

(e) Prove that \(f(\frac{x}{n}) = \frac{f(x)}{n} \) for all \(x \in \mathbb{R} \). Conclude that \(f(x) = \alpha x \) for all \(x \in \mathbb{Q} \).

(f) Suppose in addition that \(f \) is continuous, i.e. that for all \(a \in \mathbb{R} \), \(\lim_{x \to a} f(x) = f(a) \). Prove that \(f(x) = \alpha x \) for all \(x \in \mathbb{R} \). [Remark: You have proved that the only continuous homomorphisms of the additive group \((\mathbb{R}, +)\) are of the form \(f(x) = \alpha x \).]