Remark. The problems in the Putnam Competition are usually very hard, but practically every session contains at least one problem very easy to solve—it still may need some sort of ingenious idea, but the solution is very simple. This is a list of “easy” problems that have appeared in the Putnam Competition in past years—Miguel A. Lerma

2011-B1. Let h and k be positive integers. Prove that for every $\epsilon > 0$, there are positive integers m and n such that

$$|h \sqrt{m} - k \sqrt{n}| < 2 \epsilon.$$

2010-A1. Given a positive integer n, what is the largest k such that the numbers $1, 2, \ldots, n$ can be put into k boxes so that the sum of the numbers in each box is the same? [When $n = 8$, the example $\{1, 2, 3, 6\}, \{4, 8\}, \{5, 7\}$ shows that the largest k is at least 3.]

2010-B1. Is there an infinite sequence of real numbers a_1, a_2, a_3, \ldots such that

$$a_1^m + a_2^m + a_3^m + \cdots = m$$

for every positive integer m?

2010-B2. Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances AB, AC, and BC are integers, what is the smallest possible value of AB?

2009-A1. Let f be a real-valued function on the plane such that for every square $ABCD$ in the plane, $f(A) + f(B) + f(C) + f(D) = 0$. Does it follow that $f(P) = 0$ for all points P in the plane?

2009-B1. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$\frac{10}{9} = \frac{2! \cdot 5!}{3! \cdot 3! \cdot 3!}.$$

2008-A1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that $f(x, y) + f(y, z) + f(z, x) = 0$ for all real numbers x, y, and z. Prove that there exists a function $g : \mathbb{R} \to \mathbb{R}$ such that $f(x, y) = g(x) - g(y)$ for all real numbers x and y.

2008-A2. Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled.
Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

2008-B1. What is the maximum number of rational points that can lie on a circle in \(\mathbb{R}^2 \) whose center is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.)

2007-A1. Find all values of \(\alpha \) for which the curves \(y = \alpha x^2 + \alpha x + \frac{1}{24} \) and \(x = \alpha y^2 + \alpha y + \frac{1}{24} \) are tangent to each other.

2007-B1. Let \(f \) be a polynomial with positive integer coefficients. Prove that if \(n \) is a positive integer, then \(f(n) \) divides \(f(f(n) + 1) \) if and only if \(n = 1 \). [Note: one must assume \(f \) is nonconstant.]

2006-A1. Find the volume of the region of points \((x, y, z)\) such that
\[
(x^2 + y^2 + z^2 + 8)^2 \leq 36(x^2 + y^2).
\]

2006-B2. Prove that, for every set \(X = \{x_1, x_2, \ldots, x_n\} \) of \(n \) real numbers, there exists a non-empty subset \(S \) of \(X \) and an integer \(m \) such that
\[
\left| m + \sum_{s \in S} s \right| \leq \frac{1}{n + 1}.
\]

2005-A1. Show that every positive integer is a sum of one or more numbers of the form \(2^r 3^s \), where \(r \) and \(s \) are nonnegative integers and no summand divides another. (For example, \(23 = 9 + 8 + 6 \).)

2005-B1. Find a nonzero polynomial \(P(x, y) \) such that \(P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0 \) for all real numbers \(a \). (Note: \(\lfloor \nu \rfloor \) is the greatest integer less than or equal to \(\nu \).)

2004-A1. Basketball star Shanille O’Keal’s team statistician keeps track of the number, \(S(N) \), of successful free throws she has made in her first \(N \) attempts of the season. Early in the season, \(S(N) \) was less than 80% of \(N \), but by the end of the season, \(S(N) \) was more than 80% of \(N \). Was there necessarily a moment in between when \(S(N) \) was exactly 80% of \(N \)?

2004-B2. Let \(m \) and \(n \) be positive integers. Show that
\[
\frac{(m + n)!}{(m + n)^{m+n}} < \frac{m! \ n!}{m^m \ n^n}.
\]

2003-A1. Let \(n \) be a fixed positive integer. How many ways are there to write \(n \) as a sum of positive integers, \(n = a_1 + a_2 + \cdots + a_k \), with \(k \) an arbitrary positive integer and \(a_1 \leq a_2 \leq \cdots \leq a_k \leq a_1 + 1 \)? For example, with \(n = 4 \) there are four ways: 4, 2+2, 1+1+2, 1+1+1+1.
2002-A1. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^k-1}$ has the form $\frac{P_n(x)}{(x^k-1)^{n+1}}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$.

2002-A2. Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.

2001-A1. Consider a set S and a binary operation \ast, i.e., for each $a, b \in S$, $a \ast b \in S$. Assume $(a \ast b) \ast a = b$ for all $a, b \in S$. Prove that $a \ast (b \ast a) = b$ for all $a, b \in S$.

2000-A2. Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. [Example: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.]

1999-A1. Find polynomials $f(x)$, $g(x)$, and $h(x)$, if they exist, such that for all x,

$$|f(x)| - |g(x)| + h(x) = \begin{cases} -1 & \text{if } x < -1 \\ 3x + 2 & \text{if } -1 \leq x \leq 0 \\ -2x + 2 & \text{if } x > 0. \end{cases}$$

1998-A1. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube?

1997-A5. Let N_n denote the number of ordered n-tuples of positive integers (a_1, a_2, \ldots, a_n) such that $1/a_1 + 1/a_2 + \ldots + 1/a_n = 1$. Determine whether N_{10} is even or odd.

1988-B1. A composite (positive integer) is a product ab with a and b not necessarily distinct integers in $\{2, 3, 4, \ldots \}$. Show that every composite is expressible as $xy + xz + yz + 1$, with $x, y,$ and z positive integers.